Showing posts sorted by date for query binary tree. Sort by relevance Show all posts
Showing posts sorted by date for query binary tree. Sort by relevance Show all posts

Simple, how to get only left child in BST

 
As same as traversals like inorder, preorder, postorder and level order we need to traverse to BST and need to print only the left child of each nodes in Binary Search Tree.
From below example we need to get only the nodes including root nodlike 11, 6, 4, 17, 31
Simple, how to get only left child in BST
Solution:
  • Place the root node in Queue.
  • Iterate Queue until queue becomes empty. 
  • Next Enqueue the child nodes left and right nodes inside same queue and print only the left node values. 
  • Repeat the process for each leaf node.

class Node {
 Node left, right;
 int data;

 public Node(int data) {
  this.data = data;
 }
}

public class LeftNodes {

 public static void main(String[] args) {

  int a[] = { 4, 5, 3, 8, 7, 6, 100, 9, 3, 2, 1 };

  Node root = null;
  LeftNodes tree = new LeftNodes();

  for (int i = 0; i < a.length; i++) {
   root = tree.insertNode(root, a[i]);
  }
  tree.printLeftNodes(root);
 }

 public void printLeftNodes(Node root) {

  if (root == null)
   return;

  Queue<Node> queue = new LinkedList<Node>();
  queue.add(root);
  System.out.println(root.data);

  while (queue.size() > 0) {
   Node current = queue.poll();
   if (current.left != null) {
    System.out.println(current.left.data);
    queue.add(current.left);
   }
   if (current.right != null) {
    queue.add(current.right);
   }
  }
 }

 public Node insertNode(Node root, int data) {
  Node currentNode = new Node(data);
  if (root == null) {
   root = currentNode;
  } else {
   insertData(currentNode, root);
  }
  return root;
 }

 public Node insertData(Node newNode, Node root) {

  if (root.data < newNode.data) {
   if (root.right == null) {
    root.right = newNode;
   } else {
    return insertData(newNode, root.right);
   }
  } else if (root.data > newNode.data) {
   if (root.left == null) {
    root.left = newNode;
   } else {
    return insertData(newNode, root.left);
   }
  }
  return root;
 }
}

OUTPUT:


4
3
2
1
7
6
9

How to do Level order traversal in Binary Search Tree

We have see lot of tutorials based on Binary tree and also other traversals like Inorder, Preorder and Postorder etc.,

Now in this tutorial lets see how to do Level order traversal of Binary Search Tree using Queue. From the given below tree we need to get output as F, D, J, B, E, G, K, A, C I, H

How to do Level order traversal in Binary Search Tree

Solution:
  • Place the root node in Queue.
  • Iterate Queue until queue becomes empty. Dequeue the first node from Queue and print the value of that node.
  • Next Enqueue the child nodes left and right nodes inside same queue. 
  • Repeat the process until each leaf node. 
Here in above example first we need to place 'F' node inside queue. Next in loop we need to print 'F' and get the child nodes 'D' and 'J' and enqueue inside same queue. Repeat the process until all leaf nodes and when Queue becomes empty.

class Node {
 Node left, right;
 int data;

 public Node(int data) {
  this.data = data;
 }
}

public class LevelOrderTraversal {
 
 public static void main(String[] args) {

  int a[] = { 11, 6, 19, 4, 8, 5, 43, 49, 10, 31, 17, 5 };

  Node root = null;
  LevelOrderTraversal tree = new LevelOrderTraversal();

  for (int i = 0; i < a.length; i++) {
   root = tree.insertNode(root, a[i]);
  }
  tree.levelOrderTraversal(root);
 }

 public void levelOrderTraversal(Node root) {

  if (root == null)
   return;

  Queue<Node> queue = new LinkedList<Node>();
  queue.add(root);
  System.out.println(root.data);

  while (queue.size() > 0) {
   Node current = queue.poll();
   if (current.left != null) {
    System.out.println(current.left.data);
    queue.add(current.left);
   }
   if (current.right != null) {
    System.out.println(current.right.data);
    queue.add(current.right);
   }
  }
 }

 public Node insertNode(Node root, int data) {
  Node currentNode = new Node(data);
  if (root == null) {
   root = currentNode;
  } else {
   insertData(currentNode, root);
  }
  return root;
 }

 public Node insertData(Node newNode, Node root) {

  if (root.data < newNode.data) {
   if (root.right == null) {
    root.right = newNode;
   } else {
    return insertData(newNode, root.right);
   }
  } else if (root.data > newNode.data) {
   if (root.left == null) {
    root.left = newNode;
   } else {
    return insertData(newNode, root.left);
   }
  }
  return root;
 }
}


OUTPUT:


11
6
19
4
8
17
43
5
10
31
49


How to get height of BST using recursive way

The height of a Binary Search Tree is the length of the longest downward path to a leaf from root node. This is commonly needed in the manipulation of the various self-balancing trees, AVL Trees in particular. The root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (tree with no nodes, if such are allowed) has height −1.
In below example the height of the tree is 5, i.e., from root(10) which goes to 3 -> 5 -> 7 -> 8 -> 9. So maximum height of the tree is 5
How to get height of BST using recursive way


Lets see simple Java code to get the height of a BST tree using recursion.


class Node {
 Node left, right;
 int data;

 public Node(int data) {
  this.data = data;
 }
}

public class TreeHeight {

 public static void main(String[] args) {

  int a[] = { 1, 2, 3, 4, -1, -2, -3, -4, -5 };
  //int a[] = { 10,3,15,2,5,19,7,8,9,20,1 };
  
  Node root = null;
  TreeHeight tree = new TreeHeight();

  for (int i = 0; i < a.length; i++) {
   root = tree.insertNode(root, a[i]);
  }

  int height = tree.getBSTHeight(root);
  System.out.println("Binary Tree maximum height : " + height);
 }


 public int getBSTHeight(Node node) {
  if (node != null)
   return Math.max(getBSTHeight(node.left), 
                                        getBSTHeight(node.right)) + 1;
  else
   return -1;
 }
 
 public Node insertNode(Node root, int data) {
  Node currentNode = new Node(data);
  if (root == null) {
   root = currentNode;
  } else {
   insertData(currentNode, root);
  }
  return root;
 }

 public Node insertData(Node newNode, Node root) {

  if (root.data < newNode.data) {
   if (root.right == null) {
    root.right = newNode;
   } else {
    return insertData(newNode, root.right);
   }
  } else if (root.data > newNode.data) {
   if (root.left == null) {
    root.left = newNode;
   } else {
    return insertData(newNode, root.left);
   }
  }
  return root;
 }
}


OUTPUT:


Binary Tree maximum height : 5

Counting nodes in a tree? Yes how to get Binary Tree size

Counting nodes in a tree? Yes how to get Binary Tree size nothing but counting all the nodes in a Binary Tree. For example the size of the below binary tree is 11
Counting nodes in a tree? Yes how to get Binary Tree size

Lets see simple Java code to create Binary Tree and to find the size of the tree as well.


class Node {
 Node left, right;
 int data;

 public Node(int data) {
  this.data = data;
 }
}

public class BinaryTreeSize {

 public static void main(String[] args)  {

  int a[] = { 11, 6, 19, 4, 8, 17, 43, 5, 10, 31, 49 };
  Node root = null;
  BinaryTreeSize tree = new BinaryTreeSize();

  for (int i = 0; i < a.length; i++) {
   root = tree.insertNode(root, a[i]);
  }

  int count = tree.binaryTreeSize(root);
  System.out.println("Binary Tree size : " + count);
 }

 public int binaryTreeSize(Node root) {
  return nodeCount(root, 0);
 }

 /*
  * Getting binary tree size using recursive algorithm
  */
 public int nodeCount(Node root, int val) {
  if (root != null) {
   val++;
   val = nodeCount(root.left, val);
   val = nodeCount(root.right, val);
  }
  return val;
 }

 public Node insertNode(Node root, int data) {
  Node currentNode = new Node(data);
  if (root == null) {
   root = currentNode;
  } else {
   insertData(currentNode, root);
  }
  return root;
 }

 public Node insertData(Node newNode, Node root) {

  if (root.data < newNode.data) {
   if (root.right == null) {
    root.right = newNode;
   } else {
    return insertData(newNode, root.right);
   }
  } else if (root.data > newNode.data) {
   if (root.left == null) {
    root.left = newNode;
   } else {
    return insertData(newNode, root.left);
   }
  }
  return root;
 }
}


OUTPUT:


Binary Tree size : 11

How to do Iterative Postorder Traversal in BST

Earlier we have seen lot of tutorials related to Binary Search Tree like

How to find the diameter of a binary tree
Converting a Binary Tree into its Mirror Tree
Inorder Predecessor and Successor of Binary Search Tree
How to find all leaf nodes in Binary Search Tree

In this tutorial we will see how to do postorder traversal using iterative method instead of recrusive algorithm. We are going to use single stack to store nodes and applying our logic over it to get postorder traversal.
How to do Iterative Postorder Traversal in BST
Simple Java code to create Binary Search Tree and doing postorder traversal using iterative method.


import java.util.Stack;

class Node {
 Node left, right;
 int data;

 public Node(int data) {
  this.data = data;
 }
}

public class PostOrderTraversal {

 public static void main(String[] args)  {

  int a[] = { 4, 5, 8, 100, 3, 2, 9, 1, 7, 6 };
  Node root = null;
  PostOrderTraversal tree = new PostOrderTraversal();

  for (int i = 0; i < a.length; i++) {
   root = tree.insertNode(root, a[i]);
  }

  System.out.println("\n\nBy Stack : ");
  tree.postOrderTraversal(root);

 }

 /*
  * Postorder traversal using iteration and single stack
  */
 public void postOrderTraversal(Node root)  {

  //Stack to store each node
  Stack<Node> stack = new Stack<Node>();

  //Strong all left node from root into stack
  while (root != null) {
   stack.push(root);
   root = root.left;
  }
  Node node = null;

  while (stack.size() > 0) {

   // Boolean flag to check left and right nodes are visited or not
   boolean leftVisited = false, rightVisited = false;

   // Checking whether current node is equal to roots left node (1)
   if (node != null && stack.peek().left == node) {
    leftVisited = true;

   // Checking whether current node is equal to roots right node (2)
   } else if (node != null && stack.peek().right == node) {
    leftVisited = rightVisited = true;

   }
   node = stack.peek();

   // if above check (1) fails then push current nodes left node into stack
   if (node.left != null && !leftVisited) {
    stack.push(node.left);
   // if above check (2) fails then push current nodes right node into stack
   } else if (node.right != null && !rightVisited) {
    stack.push(node.right);

   } else {
    node = stack.pop();
    System.out.print(node.data + ", ");
   }
  }
 }

 public Node insertNode(Node root, int data) {
  Node currentNode = new Node(data);
  if (root == null) {
   root = currentNode;
  } else {
   insertData(currentNode, root);
  }
  return root;
 }

 public Node insertData(Node newNode, Node root) {

  if (root.data < newNode.data) {
   if (root.right == null) {
    root.right = newNode;
   } else {
    return insertData(newNode, root.right);
   }
  } else if (root.data > newNode.data) {
   if (root.left == null) {
    root.left = newNode;
   } else {
    return insertData(newNode, root.left);
   }
  }
  return root;
 }
}


OUTPUT:


By Stack : 
1, 2, 3, 6, 7, 9, 100, 8, 5, 4, 

Cool !!! How to find the diameter of a binary tree

Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root. The length of path between two nodes is represented by the number of edges between them.
From the given below Binary tree diameter for both will be 9.


Find diameter of a Binary Tree using Java

Lets see simple java code to create binary tree with the given array of integers and need to find the diameter of that.


class BST {
 BST left, right;
 int data;

 public BST(int data) {
  this.data = data;
  left = right = null;
 }
}

public class BinaryTreeDiameter {

 public static void main(String[] args) {

  int val[] = new int[] { 18,10,20,22,4,13,3,12,14,2,1,11,15,16,17 };

  BinaryTreeDiameter obj = new BinaryTreeDiameter();

  BST root = obj.createBinaryTree(val);
  
  System.out.println("Diameter : "+obj.findDiameter(root));
 }

 public int findDiameter(BST root) {
  if(root == null) return 0;
  
  int h1 = getHeight(root.left) + getHeight(root.right);
  int lh = findDiameter(root.left);
  int rh = findDiameter(root.right);
  return Math.max(h1, Math.max(lh, rh));
 }
 
 public int getHeight(BST root) {
  
  if(root == null) return 0;
  
  int lh = getHeight(root.left);
  int rh = getHeight(root.right);
  return 1 + Math.max(lh, rh);
 }
 
 public BST createBinaryTree(int[] val) {
  BST root = new BST(val[0]); // Initialize root with 1ft element
  BST tmpRoot = root; // Temporary root node

  for (int i = 1; i < val.length; i++) {

   BST lastNode = getLastNode(tmpRoot, val[i]);
   if (val[i] > lastNode.data) {
    BST tmp = new BST(val[i]);
    lastNode.right = tmp;
   } else {
    BST tmp = new BST(val[i]);
    lastNode.left = tmp;
   }
  }
  return root;
 }

 public BST getLastNode(BST root, int val) {

  if (val > root.data) {
   if (root.right == null) {
    return root;
   } else
    return getLastNode(root.right, val);
  } else {
   if (root.left == null) {
    return root;
   } else
    return getLastNode(root.left, val);
  }
 }
}


OUTPUT:


Diameter : 9


Know How to find all leaf nodes in binary tree

Create a Binary Tree with from the given array of values and then find all the leaf nodes from left to right. Leaf nodes are nothing but bottom/last nodes with both left and right subtree's are null.
For the below given Binary tree the list of leaf nodes will be 1, 6, 9

Lets see simple java code to create a binary with the given array of integers and to find the leaf nodes.


public class BinaryTreeLeafNode {

 public static void main(String[] args) {

  int val[] = new int[] { 4, 5, 8, 100, 3, 2, 9, 1, 7, 6 };
  
  BinaryTree obj = new BinaryTree();

  BST root = obj.createBinaryTree(val);

  obj.getAllLeafNodes(root);
 }

 public BST createBinaryTree(int[] val) {
  BST root = new BST(val[0]); // Initialize root with 1ft element
  BST tmpRoot = root; // Temporary root node

  for (int i = 1; i < val.length; i++) {

   BST lastNode = getLastNode(tmpRoot, val[i]);
   if (val[i] > lastNode.data) {
    BST tmp = new BST(val[i]);
    lastNode.right = tmp;
   } else {
    BST tmp = new BST(val[i]);
    lastNode.left = tmp;
   }
  }
  return root;
 }

 public void getAllLeafNodes(BST root) {
  if (root.left != null) {
   getAllLeafNodes(root.left);
  }
  if (root.right != null) {
   getAllLeafNodes(root.right);
  }
  /*
   * If both left and right are null then its leaf node
   */
  if(root.left == null && root.right == null) {
   System.out.print(root.data + ", ");
  }
 }

 public BST getLastNode(BST root, int val) {

  if (val > root.data) {
   if (root.right == null) {
    return root;
   } else
    return getLastNode(root.right, val);
  } else {
   if (root.left == null) {
    return root;
   } else
    return getLastNode(root.left, val);
  }
 }
}


OUTPUT:


1, 6, 9,